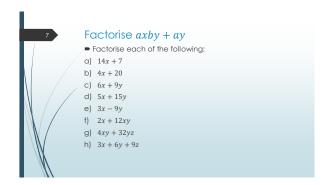
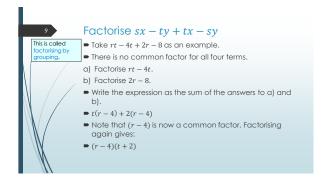
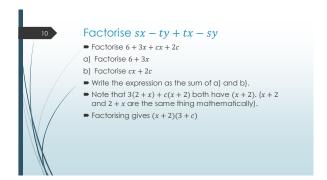
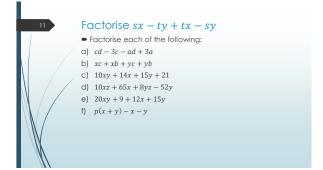
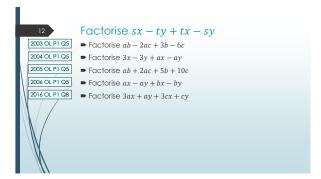

1	Factors – Learning Outcomes
	► Factorise expressions such as:
	■ ax , axy , where $a \in \mathbb{Z}$
	■ $abxy + ay$, where $a, b \in \mathbb{Z}$
	ightharpoonup sx - ty + tx - sy, where x, t, x, y are variable
	$ ightharpoonup ax^2 + bx$, where $a, b \in \mathbb{Z}$
	$ ightharpoonup x^2 + bx + c$, where $b, c \in \mathbb{Z}$
	$\rightarrow x^2 - a^2$
\W	
///	

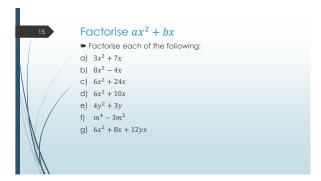


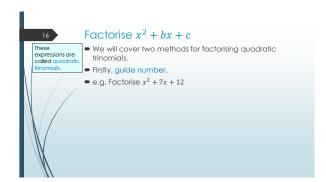


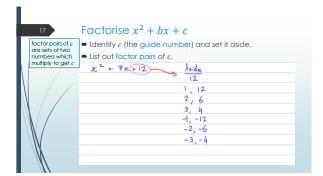


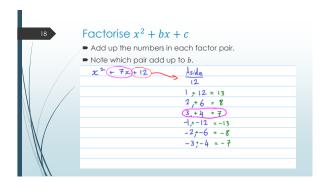


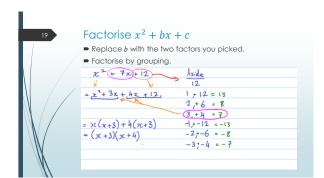


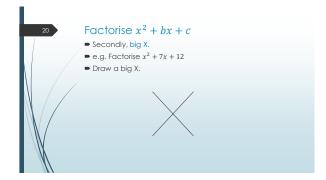


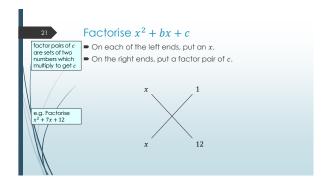


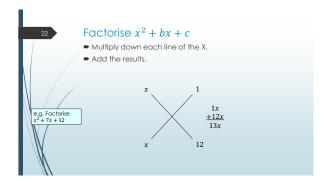


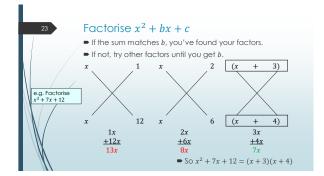

13	Factorise $ax^2 + bx$
	\blacksquare e.g. Factorise $2x^2 + 5x$
	■ What is the highest common factor?
	$ \sum_{x=0}^{5x} \frac{5x}{x} = 5 $
	► Factorising gives:
	$ 2x^2 + 5x = x(2x+5) $
\W	
W	

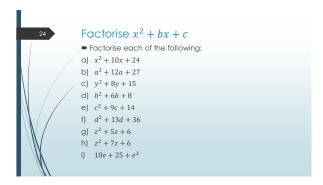

14	Factorise $ax^2 + bx$
	\blacksquare e.g. Factorise $6x^2 + 8x$
	■ What is the highest common factor?
	► Factorising gives:
	$ 6x^2 + 8x = 2x(3x + 4) $
\\\/	
\\X	
///	

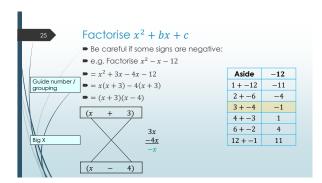


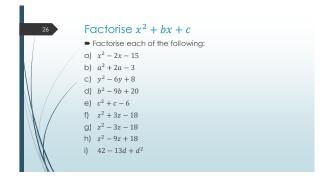


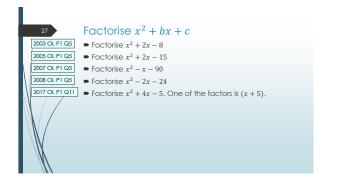


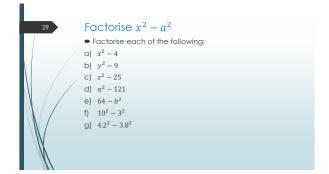












28	Factorise $x^2 - a^2$
	• When an expression can be written as a square minus a square, (i.e. $x^2 - y^2$) it is called a difference of two squares.
	■ The factorisation can be written simply $(x - y)(x + y)$.
	$ ightharpoonup$ e.g. $x^2 - a^2 = (x - a)(x + a)$
	■ e.g. $m^2 - n^2 = (m - n)(m + n)$
	■ e.g. $7^2 - 5^2 = (7 - 5)(7 + 5) = (2)(12) = 24$
	If the two terms are not squares, they must be turned into squares first:
\W	■ e.g. $x^2 - 16 = x^2 - 4^2 = (x - 4)(x + 4)$
\mathbb{N}	

